首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1322篇
  免费   286篇
  国内免费   212篇
测绘学   34篇
大气科学   92篇
地球物理   506篇
地质学   445篇
海洋学   68篇
天文学   580篇
综合类   41篇
自然地理   54篇
  2024年   4篇
  2023年   7篇
  2022年   22篇
  2021年   22篇
  2020年   27篇
  2019年   35篇
  2018年   33篇
  2017年   48篇
  2016年   29篇
  2015年   36篇
  2014年   43篇
  2013年   54篇
  2012年   60篇
  2011年   47篇
  2010年   57篇
  2009年   117篇
  2008年   100篇
  2007年   123篇
  2006年   121篇
  2005年   97篇
  2004年   116篇
  2003年   84篇
  2002年   86篇
  2001年   74篇
  2000年   71篇
  1999年   60篇
  1998年   50篇
  1997年   29篇
  1996年   37篇
  1995年   27篇
  1994年   24篇
  1993年   13篇
  1992年   22篇
  1991年   14篇
  1990年   10篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
排序方式: 共有1820条查询结果,搜索用时 186 毫秒
41.
42.
Ram-pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram pressure and the ram-pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram pressures that are likely to cause an expedient loss of all gas. Strong ram pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion on to a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram pressures of  >10−11 dyn cm−2  which most likely led to a substantial loss of the gas.  相似文献   
43.
44.
Assuming that the dark matter is entirely made up of neutralinos, we re-visit the role of their annihilation on the temperature of diffuse gas in the high-redshift universe  ( z > 10)  , before the formation of luminous structures. We consider neutralinos of particle mass 36 and 100 GeV. The former is able to produce  ∼7  e e +  particles per annihilation through the fremionic channel, and the latter ∼53 particles assuming a purely bosonic channel. High-energy   e e +  particles up-scatter the cosmic microwave background (CMB) photons into higher energies via the inverse-Compton scattering. The process produces a power-law   e e +  energy spectrum of index −1 in the energy range of interest, independent of the initial energy distribution. The corresponding energy spectrum of the up-scattered photons is a power law of index −1/2, if absorption by the gas is not included. The scattered photons photoheat the gas by releasing electrons which deposit a fraction (14 per cent) of their energy as heat into the ambient medium. For uniformly distributed neutralinos, the heating is insignificant. The effect is greatly enhanced by the clumping of neutralinos into dense haloes. We use a time-dependent clumping model which takes into account the damping of density fluctuations on mass-scales smaller than  ∼10−6 M  . With this clumping model, the heating mechanism boosts the gas temperature above that of the CMB after a redshift of   z ∼ 30  . By   z ≈ 10  , the gas temperature is nearly 100 times its temperature when no heating is invoked. Similar increase is obtained for the two neutralino masses considered.  相似文献   
45.
The redshifts of all cosmologically distant sources are expected to experience a small, systematic drift as a function of time due to the evolution of the Universe's expansion rate. A measurement of this effect would represent a direct and entirely model-independent determination of the expansion history of the Universe over a redshift range that is inaccessible to other methods. Here we investigate the impact of the next generation of Extremely Large Telescopes on the feasibility of detecting and characterizing the cosmological redshift drift. We consider the Lyα forest in the redshift range  2 < z < 5  and other absorption lines in the spectra of high-redshift QSOs as the most suitable targets for a redshift drift experiment. Assuming photon-noise-limited observations and using extensive Monte Carlo simulations we determine the accuracy to which the redshift drift can be measured from the Lyα forest as a function of signal-to-noise ratio and redshift. Based on this relation and using the brightness and redshift distributions of known QSOs we find that a 42-m telescope is capable of unambiguously detecting the redshift drift over a period of ∼20 yr using 4000 h of observing time. Such an experiment would provide independent evidence for the existence of dark energy without assuming spatial flatness, using any other cosmological constraints or making any other astrophysical assumption.  相似文献   
46.
47.
48.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   
49.
Estimating the temperature and metal abundance of the intracluster and the intragroup media is crucial to determine their global metal content and to determine fundamental cosmological parameters. When a spatially resolved temperature or abundance profile cannot be recovered from observations (e.g. for distant objects), or deprojection is difficult (e.g. due to a significant non-spherical shape), only global average temperature and abundance are derived. After introducing a general technique to build hydrostatic gaseous distributions of prescribed density profile in potential wells of any shape, we compute the global mass-weighted and emission-weighted temperature and abundance for a large set of barotropic equilibria and an observationally motivated abundance gradient. We also compute the spectroscopic-like temperature that is recovered from a single temperature fit of observed spectra. The derived emission-weighted abundance and temperatures are higher by 50 to 100 per cent than the corresponding mass-weighted quantities, with overestimates that increase with the gas mean temperature. Spectroscopic temperatures are intermediate between mass and luminosity-weighted temperatures. Dark matter flattening does not lead to significant differences in the values of the average temperatures or abundances with respect to the corresponding spherical case (except for extreme cases).  相似文献   
50.
Large amounts of particles ejected from the nucleus surface are present in the vicinity of the cometary nuclei when comets are near the Sun (at heliocentric distances ≤2 AU). The largest dust grains ejected may constitute a hazard for spatial vehicles. We tried to obtain the bounded orbits of those particles and to investigate their stability along several orbital periods. The model includes the solar and the cometary gravitational forces and the solar radiation pressure force. The nucleus is assumed to be spherical. The dust grains are also assumed to be spherical, and radially ejected. We include the effects of centrifugal forces owing to the comet rotation. An expression for the most heavy particles that can be lifted is proposed. Using the usual values adopted for the case of Halley’s comet, the largest grains that can be lifted have a diameter about 5 cm, and the term due to the rotation is negligible. However, that term increases the obtained value for the maximum diameter of the lifted grain in a significant amount when the rotation period is of the order of a few hours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号